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Extremely thermoacidophilic Crenarchaeota belonging to the order Sulfolobales flourish in hot acidic habitats that are strongly
oxidizing. The pH extremes of these habitats, however, often exceed the acid tolerance of type species and strains. Here, adaptive
laboratory evolution was used over a 3-year period to test whether such organisms harbor additional thermoacidophilic capac-
ity. Three distinct cell lines derived from a single type species were subjected to high-temperature serial passage while culture
acidity was gradually increased. A 178-fold increase in thermoacidophily was achieved after 29 increments of shifted culture pH
resulting in growth at pH 0.8 and 80°C. These strains were named super-acid-resistant Crenarchaeota (SARC). Mathematical
modeling using growth parameters predicted the limits of acid resistance, while genome resequencing and transcriptome rese-
quencing were conducted for insight into mechanisms responsible for the evolved trait. Among the mutations that were de-
tected, a set of eight nonsynonymous changes may explain the heritability of increased acid resistance despite an unexpected lack
of transposition. Four multigene components of the SARC transcriptome implicated oxidative stress as a primary challenge ac-
companying growth at acid extremes. These components included accelerated membrane biogenesis, induction of the mer
operon, and an increased capacity for the generation of energy and reductant.

Extremophiles are defined by their unusual traits relative to
most microbes by the magnitude of physical or chemical pa-

rameters governing their ability to grow. Many but not all ex-
tremophiles belong to the domain Archaea. Those native to acidic
geothermal environments include members of the phylum Cren-
archaeota, and Sulfolobus solfataricus is a commonly used species
that expresses the extreme thermoacidophilic biotype. The con-
fluence of superheated groundwater penetrating pyritic mineral
deposits creates the niche in which these organisms flourish.
These highly oxidative environments result from both abiotic
and biotic processes and are typified by high levels of iron and
sulfur (1).

While geothermal pool and sediment temperatures do not ex-
ceed 100°C, their pH values range widely, from near neutral to pH
0 and below. Curiously, despite over 40 years of research at such
locations across many continents, the pH optima of the type spe-
cies and strains do not correlate with the extremity of the resident
low-acid conditions. For example, five strains of S. solfataricus and
Sulfolobus acidocaldarius analyzed for pH optima showed varia-
tion between strains, and while all strains were able to grow at
more neutral pHs (�4.0), none were able to grow below pH 2.0
(2). A second trend associated with the thermoacidophilic biotype
is a direct correlation between the temperature optimum and pH
optimum: as one decreases, so too does the other. For example,
with a 5°C drop in the temperature optimum (Topt), the corre-
sponding pH optimum (pHopt) is reduced 1 unit, such as for Met-
allosphaera sedula (Topt, 75°C; pHopt 2.0) (3). With another 10°C
drop in the temperature optimum, the pH optimum is reduced
another 1 unit, such as for Picrophilus torridus (Topt, 60°C; pHopt

1.0) (4). These trends support the idea that extremes of heat resis-
tance preclude extremes of acid resistance, perhaps reflecting the
overall extent of oxidation (1). They also suggest that retention of
thermoacidophily may depend strongly on continued selection.

Despite the lack of correlation between pH optima and habitat,

Sulfolobus species still grow well under relatively acidic conditions
ranging from pH 2.5 to 4.0 (pHopt 3.0) (2). While the mechanism
of pH homeostasis in all acidophiles is poorly understood, the
Sulfolobales maintain a near-neutral cytoplasm (pH 6.5) like neu-
trophiles but are able to tolerate significantly greater pH gradients
(5). General mechanisms that acidophiles employ to prevent pro-
ton influx include maintaining chemiosmotic gradients that
maintain a positively charged cytoplasm that repels the entry of
positively charged protons (6, 7) and using proton pumps to re-
move excess protons that enter the cell (8). Acid resistance in
thermoacidophilic archaea can also be explained by their novel
membrane structure. Archaeal membranes contain a variety of
diether- and tetraether-linked lipids (9, 10), and these lipids are
more impermeable to protons than neutrophile membranes, min-
imizing proton leakage into the cytoplasm (11–14). Their lipid
packing may also change with temperature and possibly pH to
control proton permeability (15).

Most studies on acid resistance in neutrophiles have focused
on the ability of enteric bacteria to maintain viability after being
acid shocked (pH 2.5) for short periods (16–20). One common
mechanism of acid resistance in neutrophiles is an amino acid
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decarboxylase-dependent system where specific amino acids such
as glutamate and arginine are protonated and exported, titrating
the protons in the cytoplasm. The efflux of the protonated amino
acids is coupled to the import of unprotonated amino acids that
can be used to titrate more protons (20–22). Because these mech-
anisms require amino acids, they do not function in minimal me-
dia, and neutrophiles like Escherichia coli become much more acid
sensitive under these conditions (21, 22). However, S. solfataricus
does not contain the amino acid decarboxylases used in this pro-
cess.

In this work, experimental evolution was employed to explore
the limits of extreme thermoacidophily. Unlike the experimental
microbial evolution approach that has focused on genetic drift
and natural mutation rates under nonselective conditions (23),
so-called “adaptive laboratory” evolution (24, 25) was used here to
explore the limits of the thermoacidophilic biotype. The phenotype
of the resulting super-acid-resistant Crenarchaeota (SARC) sup-
ports the hypothesis that this trait, at least in a thermoacidophile,
can remanifest with selection.

MATERIALS AND METHODS
Archaeal strains and cultivation. Sulfolobus solfataricus 98/2 (JCM
30930) (26, 27) and its derivatives PBL2025 (28, 29) and PBL2091 (29)
were grown in basal salts medium (30), modified as described previously
by Brock et al. (31). Complex medium contained 0.2% (wt/vol) tryptone,
and the medium was adjusted to the desired pH by using sulfuric acid. All
cultures were incubated at 80°C in glass screw-cap flasks with aeration in
orbital baths, as previously described (27, 32, 33). Planktonic growth was
monitored by light absorption at a wavelength of 540 nm using a Cary 50
spectrophotometer (Agilent). Cultures were stored as described previ-
ously for other thermoacidophiles (34). Cells were cultured in complex
medium containing 0.2% (wt/vol) tryptone adjusted to different pH val-
ues by using various acids, as indicated, or with the addition of sodium
sulfite.

Adaptive evolution. S. solfataricus cell lines were inoculated into
50-ml flasks with media with pH values ranging from 1.0 to 3.0. Maxi-
mum growth rates (�max) of each strain under each pH condition were
calculated by exponential regression of cell density measurements to fit to
a first-order rate equation. Mid-exponential-phase cells of S. solfataricus
98/2 strain SULA (26) that were grown at a pH optimum of pH 3.0 were
then subcultured into pH 2.5 medium. The initial growth rate at pH 2.5
was calculated, and exponential-phase cells from this culture were pas-
saged back into pH 2.5 medium. The new growth rate at pH 2.5 was
determined, and these cells were then passaged into pH 2.0 medium. This
process of subculturing cells at slightly lower pHs, with passaging several
times under each condition, and then decreasing the pH again was re-
peated on multiple S. solfataricus cell lines. The cells were passaged under
each condition until the growth rate no longer improved with passaging at
that pH. At this point, the cells were considered evolved to the new pH
value.

Clonality was established repeatedly during the experimental process.
When pH 1.5-adapted lineages were obtained, the strains were purified to
clonality by using a solid complex medium (pH 3.0) prepared by using
Brock salts mixed with 0.6% Phytagel (Sigma) and supplemented with
0.2% (wt/vol) tryptone, followed by incubation at 80°C. Clonal isolates
were then rescreened for the phenotype of stronger acid resistance than
the wild type by measuring their growth rates at low pH. The growth rates
at low pH were also remeasured after passaging of the isolates at pH 3.0 for
several cycles to verify that the acid resistance phenotype was stable and
heritable rather than a transient response. One of the clonal isolates of pH
1.5-adapted cells, named SULB, was passaged under increasingly acidic
conditions through this process. In general, as the pH was decreased, the
number of passages under each condition was increased. When the cul-
tures were adapted to pH 1.0, more clonal isolates were purified, and their

phenotype was verified. One of the pH 1.0-evolved isolates, named SULC,
was then used for subsequent passaging below pH 1.0 to pH 0.8.

Modeling of growth limitation at extreme pH. The degree of change
in thermoacidophily exhibited by the experimentally evolved strains was
evaluated by maximum growth rate differences at various pH values. The
maximum growth rate was obtained by exponential regression of optical
density (OD)-versus-time data. Each regression demonstrated a coeffi-
cient of determination (r2) of �0.95. Only growth curves from the cul-
tures considered fully evolved to each pH were used to obtain maximum
growth rate data points (intermediate passages were not included). A
residual sum of squares was calculated to compare the degrees of fit be-
tween experimental growth data and the cardinal pH model (CPM) (35)
and three additional models (36–38). The CPM was selected to analyze the
maximum growth rate of the SARC and parental strains as a function of
pH due to a higher degree of fit. A four-parameter nonlinear regression
using Sigma Plot (version 12) determined the three gamma parameters
(pHmin, pHmax, and pHopt) and the maximum growth rate at the optimal
pH (�opt) according to the equation �pH � �max/�opt (31), where

�pH �
�pH � pHmin� �pH � pHmax�

�pH � pHmin� �pH � pHmax� � �pH � pHopt�2 (1)

Lipid analysis. Total lipid fractions were extracted, using the Bligh-
Dyer method (39), from 2.5 � 1010 cells of SULA and SULC cultivated at
pH 3.0 and SULC cultivated at pH 1.0. The lipid fractions were then
separated by thin-layer chromatography (TLC) on silica 60 plates (Milli-
pore), using a 65:25:4 chloroform-methanol-water solvent system. Repli-
cate samples were analyzed after chromatography using various dyes.
8-Anilino-1-naphthalene sulfonic acid (ANSA) (1 mM) was used for de-
tection of total lipids, and alpha-naphthol (15%, wt/vol) was used for
detection of glycolipids (40). The ANSA-stained TLC plates were exam-
ined under UV light, while the alpha-naphthol-stained plates were exam-
ined under visible light.

Measurement of intracellular pH. Membrane-soluble pH-sensitive
fluorescent dyes were used to examine intracellular pH. Cell samples of
SULA cultivated at pH 3.0 and SULC cultivated at pH 1.0 were washed and
resuspended in pH 3.0 basal salts. 2=,7=-Bis-(2-carboxyethyl)-5 (and -6)-car-
boxyfluorescein acetoxymethyl ester (BCECF-AM) (Life Technologies) was
added to a final concentration of 1 �M, and cells were incubated at 80°C
for 1 h (41). The cells were then washed twice and resuspended in pH 3.0
basal salts. The fluorescence emission at 535 nm was measured as a result
of excitation at either 490 nm or 440 nm (isobestic point), and the ratios of
fluorescence were used to compare the internal pHs between the strains
relative to fluorescence using standard curves prepared with pH-adjusted
basal salts.

Genome and transcriptome sequencing. High-molecular-weight
genomic DNA was prepared from clonal cultures of the S. solfataricus
strains as described previously (34, 42). RNA was prepared, as described
previously (32), from wild-type cells grown at pH 3.0, pH 1.5-adapted
clonal isolates grown at pH 1.5, and pH 1.0-adapted isolates grown at pH
1.0. Biological replicates were isolated under each of these conditions. The
integrity and purity of the DNA and RNA samples were verified by spec-
troscopic measurements (the ratio of absorbance at 260 nm to absorbance
at 280 nm and the ratio of absorbance at 260 nm to absorbance at 230 nm)
and confirmed by agarose gel electrophoresis. DNA and RNA library
preparation was conducted by using the Joint Genome Institute (JGI)
automated process with a BioMek FX robot. rRNA was depleted from the
RNA samples by using exonucleases (Epicentre mRNA-only prokaryotic
RNA isolation kit) prior to the rest of the process. The samples were
sheared by using a Covaris E210 sonicator, followed by end repair and
phosphorylation. Fragments ranging from 100 to 500 bp were selected for
sequencing using an automated solid-phase reversible immobilization se-
lection system. 3=-terminal adenine was added to the fragments, followed
by adaptor sequence ligation. RNA libraries with adaptors added were
converted into cDNA libraries by reverse transcription. Genome and
transcriptome sequencing of the libraries was done by using an Illumina

McCarthy et al.

858 aem.asm.org February 2016 Volume 82 Number 3Applied and Environmental Microbiology

http://aem.asm.org


Hiseq 2000 system, generating paired-end 100-bp reads. Samples were
applied to a 25-Gb 2-by-100 channel that gave 1 Gb of sequence informa-
tion per sample (500� coverage). All of the RNA libraries were �25 Gb in
size and had 45 million to 75 million non-rRNA reads that mapped to the
transcriptome.

Sequences were mapped to the Sulfolobus solfataricus 98/2 strain SULA
reference genome (26) (GenBank accession number CP011057) by using
BOWTIE2 (version 2.1.0) and SAMTOOLS (version 1.0). Genome se-
quence information is available in the NCBI database. All mutations in the
genome sequence were identified through sequence comparisons, and
mutations that were located within open reading frames (ORFs) were
analyzed in more detail to determine their codon positions and the effects
that they would have on the protein sequence. The coordinates of each
mutation were also cross-referenced to locations of the known domains in
each protein to verify whether or not any mutations occurred within
important functional domains. Transcriptome sequencing (RNA-seq)
read depth was evaluated across ORFs to eliminate artifacts and identify
antisense transcripts, and counts for each ORF were normalized by using
the reads per kilobase per million (RPKM) method (43). Read depth was
also normalized to the transcript abundance of the archaeal generalized
transcription factor TFB1 because it exhibited an invariant pattern of
abundance. This enabled comparisons between different RNA-seq sam-
ples, as described previously, using several other methods for mRNA
quantitation (29, 32).

Mutant construction. One of the genes identified as being upregu-
lated in SULC, merI (SULA_0494), was disrupted with lacS in S. solfatari-
cus strain PBL2025 by targeted recombination using plasmid pPB1015, as
previously described (29). Recombinant identity was confirmed by PCR
and restriction analysis of the wild-type merI allele and the disrupted allele
in the recombinant strain. Amplification of the disrupted merI locus in
strain PBL2036 produced a single band �1.80 kb larger than that observed
with the undisrupted locus due to the presence of the inserted copy of lacS.

Accession numbers. The S. solfataricus strain 98/2 (SULA) genome
sequence is available at GenBank under accession number CP011057. The
sequences of the evolved derivatives SULB and SULC are available under
GenBank accession numbers CP011055 and CP011056. RNA-seq raw
data are available in the JGI Genome Portal under JGI Project IDs 1019993
(SULA), 1019996 (SULB), and 1019999 (SULC). Finally, RNA-seq data

are also available in the Sequence Read Archive under accession numbers
SRX872629 and SRX872630 (SULA), SRX872631 and SRX872632
(SULB), and SRX712375 and SRX712376 (SULC).

RESULTS
Isolation of SARC. To test the hypothesis that the thermoacido-
philic archaeon Sulfolobus solfataricus might harbor the capacity
for significantly greater thermoacidophily than currently de-
scribed, an adaptive laboratory evolution process was employed
by using extensive culture passage that extended over a 3-year
period. Prior to the initiation of these experiments, growth rates
were determined for the parental S. solfataricus cell lines. Wild-
type S. solfataricus strain 98/2 (26, 27), strain PBL2025 (28, 29),
and strain PBL2091 (29) (here named SULA, SULG, and SULM,
respectively) were inoculated after a single passage at pH 3.0 into
complex medium with a range of pH values from 3.00 to 1.00 (Fig.
1; see also Fig. S1 and S2 in the supplemental material). All these
cell lines were unable to grow below pH 1.60. The cardinal pH
model (CPM) (35) predicted a minimum pH of 1.54 for growth of
SULA (Fig. 2). Parental strain SULA was then passaged for 130 cell
divisions with 29 increments in shifted culture pH that gradually
increased the culture acidity from pH 3.0 to pH 0.80. Periodically,
clonally purified isolates were recovered and stored for subse-
quent analysis. The growth rate and cell yield for SULA decreased
with increasing acidity; however, both physiological parameters
improved upon continued passage, as indicated by bars of de-
creasing height (Fig. 1). A clonal isolate from the evolved popula-
tion cultured at pH 1.5 was named SULB. This isolate maintained
the ability to grow at pH 1.5 even after passage at a starting pH of
3.0. Strain SULB was used for subsequent passage in media with
pH values of �1.5. Cultures that evolved to grow at pH 1.0 were
repeatedly passaged and then clonally purified and screened for
the ability to grow at low pH values, indicating increased acid
resistance relative to the parental cell line. A resulting isolate,
named SULC, was derived from SULB. Strain SULC was used for
all passaging below pH 1.0 (Fig. 1). Clonal isolates of cultures
grown at pHs below 1.0 were also recovered and purified. One
isolate recovered at pH 0.8 was named SULD. To determine
whether there might be significant variation in the rate and extent

FIG 1 Increasing thermoacidophily by adaptive passage. Bars indicate indi-
vidual passaged cultures of Sulfolobus solfataricus. Clonal populations adapted
for specific pH values are circled (green, SULA; yellow, SULB; red, SULC; blue,
SULD). Only SULA, the wild-type parental strain, was pH downshifted with-
out adaptation. The bar height is proportional to the generation time and
decreases with increasing passages.

FIG 2 Model of microbial growth during acid adaptation. Shown are experi-
mentally determined maximum growth rates of SULA (closed circles) and
SULC (open circles) grown under conditions of decreasing pH by serial pas-
sage. Maximum growth rates predicted by the CPM utilizing values listed in
Table 1 are shown as lines (dotted line, SULA CPM; solid line, SULC CPM).

Extremophile Trait Evolution
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of change in evolved physiological parameters, the same experi-
mental process was repeated independently by using two other S.
solfataricus strains, SULG and SULM, as the starting cell lines. The
overall growth physiology of these strains and their derivatives was
similar to that of SULA and its derivatives throughout the process
of successive passage (see Fig. S1 and S2 in the supplemental ma-
terial).

Physiology of acid-adapted strains. The SARC strains have
increased resistance to strong-acid conditions relative to their re-
spective parental strains. In addition to increased resistance to
sulfuric acid, their response to other acids was examined. A similar
pattern of increased resistance was evident using hydrochloric
acid, while no change was observed in response to phosphoric or
nitric acid. Strain SULD, the most evolved isolate, was able to grow
at a 6.32-fold-higher acidity (pH 0.80; 158 mM H2SO4) than the
limit for the parental cell line SULA (pH 1.60; 25 mM H2SO4) and
at a 158-fold-higher acidity than the SULA optimum (pH 3.0; 1
mM H2SO4). A comparison of the growth rates of SULA and
SULD over this range of acidities is shown in Fig. 3.

The increased acid resistance of the SARC strains was both
constitutive and heritable, and the phenotype was evident even
after repeated passage at a more neutral pH (pH 3.0) followed by
a downshift to more acidic cultivation conditions. Since increased
sulfuric acid resistance was accompanied by a similar pattern for
hydrochloric acid, the altered trait also encompassed increased
resistance to chloride ions and sulfate ions, respectively. To assess
the response to other sulfur ions, the effect of the addition of
sulfite (SO3

2	) was examined. Increased resistance to sulfite (so-
dium salt) was evident. SULC exhibited a 10-fold increase in the
response to this well-known microbicide (44, 45) relative to the
parental strain. At pH 3.0, SULC grew in the presence of 1.0 mM
sodium sulfite, while the concentration limit for the parental
strain SULA was 10-fold lower (0.1 mM sodium sulfite). In the
presence of 1.0 mM sodium sulfite, SULC had a 2-fold-longer
generation time than that of SULC grown in the same medium
without the addition of sodium sulfite, while its growth yield was
decreased by 44% (see Fig. S3 in the supplemental material).

Modeling of evolved acid resistance. The maximum exponen-

tial growth rate of SULC was less affected by moderate pH shifts
and showed a gradual decrease as acidity was increased compared
to the steep drop-off exhibited by the wild-type parental strain
SULA (Fig. 1 to 3). However, the growth rate of strain SULC began
to decrease more dramatically when the pH was shifted to �1.0.
The CPM model predicted that SULC should be able to grow to a
minimum pH of 0.60, which is a pH minimum decrease of 0.94
pH units or a 10.04-fold-higher acidity than the minimum for the
parental strain SULA and a 251-fold-higher acidity than the opti-
mal pH (Fig. 2). Nonlinear regression to fit parameters to �max at
various obtained pH values was performed (Table 1). The model
for growth physiology during experimental passage of SULA and
SULC to enhance thermoacidophily fit the experimentally deter-
mined growth rates closely, with r2 values of 0.96 and 0.97, respec-
tively. Empirical data demonstrated that SULC could not grow
below a pH value of 0.8 and therefore that the modeled value
could not be achieved with this evolved cell line.

Analysis of mutations in evolved strains. Genome resequenc-
ing of the parental strain SULA and its SARC derivatives SULB
and SULC was conducted to identify their possible mutational
differences (26). A total of 1 Gb of reads (500-fold coverage) was
generated for each genome. The S. solfataricus 98/2 strain SULA
genome (26) deposited in the NCBI database (GenBank accession
number CP011057) was used as the reference for SULB and SULC.
The pH 1.5-evolved SULB strain had only three mutations com-
pared to its parent strain SULA (Table 2). Two of these mutations
were nonsynonymous mutations in a formate dehydrogenase
(SULA_0631) and an amino acid permease (SULA_0993). Addi-
tionally, SULB had one synonymous mutation in a hypothetical
protein (SULA_0550).

The pH 1.0-evolved SULC strain contained a total of 18 muta-
tions relative to the parental strain SULA. This included all three
of the mutations seen in SULB whose presence verified the integ-
rity of the experimental process. Since additional mutations were
evident in SULC, it was concluded that the SULB mutations were
not sufficient to cause the more extreme phenotype exhibited by
SULC. The new mutations in SULC included three synonymous
mutations, eight nonsynonymous mutations in annotated ORFs,
two mutations in pseudogenes, one transposition, and one inter-
genic mutation (Table 2). Because the intergenic mutation did not
map to a regulatory sequence or promoter based on promoter
localization predicted by analysis of 5= untranslated regions
(UTRs) flanking transcribed regions derived from analysis of the
RNA-seq data, it and the mutations in pseudogenes, and synony-
mous mutations, were not pursued. The remaining mutations
were examined further to determine their importance for the
evolved phenotype. One of the genes with a nonsynonymous sub-
stitution (SULA_0515) and both of the genes disrupted by the

FIG 3 Comparison of SULA and SULD physiologies at low pH. The growth
patterns of SULA (open circles) and SULD (closed circles) across a range of
acidities from 1 mM (pH 3.0) to 158 mM (pH 0.8) are shown as doublings per
hour.

TABLE 1 Results of CPM nonlinear regression of maximum growth
rates of SULA and SULC

Parameter

Value for strain

SULA SULC

pH optimum 2.84 2.61
pH maximum 4.95 6.73
�max at optimal pH (1/h) 0.1284 0.1010
pH minimum 1.54 0.60
r2 0.96 0.97
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transposition event (SULA_0647 and SULA_0648) were sugar
transporters. Since there was no sugar in the SULC growth media,
these mutations were unlikely to be related to the acid resistance
phenotype. Two of the nonsynonymous substitutions in SULC
occurred very close to the 3= ends of the ORFs (SULA_1179 and
SULA_1334), away from annotated functional domains and ac-
tive sites, and are therefore also unlikely to affect the pheno-
type. One of the nonsynonymous substitutions resulted in a
nonsense mutation in phenylacetate coenzyme A (CoA) ligase
(SULA_0431). This enzyme catalyzes the first step in the phenyl-
acetate pathway used to degrade organic aromatic substrates. Dis-
ruptions of this gene in other organisms affected only growth on

organic substrates such as phenylacetate or sensitivity to organic
acids such as phenylacetic acid (46). The remaining nonsynony-
mous changes were one substitution in a hypothetical protein
(SULA_0570) containing a Bin/amphiphysin/Rvs (BAR) domain,
which is known to play a role in lipid binding and membrane
dynamics (47), and three substitutions in an amino acid permease
(SULA_2076). While no single mutation in SULC appeared suffi-
cient to explain the evolved phenotype, it is possible that acting
together, several or all of them confer improved fitness at lower
pH values.

Because adaptive laboratory evolution has not been applied
previously to studies involving archaea, it was of interest to eval-

TABLE 2 Mutations in SARC strain SULCa

Strain Coordinate(s) Change ORF Protein
Mutation
location(s) Domain

SULC 394425 C¡T SULA_0431 Phenylacetate-CoA ligase nt 633/1308 Phenylacetate-CoA ligase
Gln¡stop aa 211/435

SULC 470619 G¡T SULA_0515 Sugar ABC transporter ATP-
binding protein

nt 710/945 ABC-type sugar transport
system, ATPase
component

Met¡Ile aa 237/314
SULB and

SULC
507233 C¡T SULA_0550 Hypothetical protein nt 176/810 NA (no conserved domains)

Synonymous aa 59/269
SULC 529755 A¡T SULA_570 Hypothetical protein nt 673/1356 BAR superfamily

Glu¡Val aa 225/451
SULB and

SULC
590768 C¡T SULA_0631 Oxidoreductase nt 556/2940 4Fe-4S dicluster domain

Gly¡Ala aa 186/979
SULC 604037–606806 Transposition

event
SULA_0647-

SULA_0648
ABC transporter substrate-

binding protein, sugar ABC
transporter permease

Periplasmic binding protein
type 2 superfamily,
transmembrane PBP2
superfamily

SULB and
SULC

962913 G¡A SULA_0993 Amino acid permease nt 256/1341 Amino acid transporter

Thr¡Ile aa 86/446
SULC 1123466 C¡A SULA_1179 NAD-dependent dehydratase nt 891/936 NADB Rossmann

superfamily
Gln¡Lys aa 297/311

SULC 1235929 C¡A SULA_1334 Hypothetical protein nt 1840/1899 NA (outside domains)
Arg¡Leu aa 614/632

SULC 1321391 G¡A Intergenic region NAb NAb NA (no conserved domains)
SULC 1761347 C¡T SULA_1945 Glutamyl tRNA amidotransferase nt 336/1335 GatD subunit of archaeal

Glu-tRNA
amidotransferase

Synonymous aa 112/444
SULC 1847693 G¡A SULA_2027 Oxidoreductase nt 611/1323 Oxidoreductase q1

superfamily
Synonymous aa 204/440

SULC 1847144 C¡T SULA_2027 Oxidoreductase nt 1160/1323 Hydrogenase 4 subunit F
Synonymous aa 387/440

SULC 1892243 A¡C SULA_2076 Amino acid permease nt 746/1944 Amino acid permease
Arg¡Ser aa 249/647

SULC 1892577 T¡G SULA_2076 Amino acid permease 1080/1944 nt Amino acid permease
Ser¡Ala 360/647 AA

SULC 1892619 A¡T SULA_2076 Amino acid permease nt 1122/1944 Amino acid permease
Thr¡Ser aa 374/647

SULC 2569782 C¡T NA Pseudogene nt 296/407 NA (no conserved domains)
SULC 2691508 G¡A NA Pseudogene nt 903/1202 NA (no conserved domains)
a aa, amino acid; nt, nucleotide; NA, not applicable; NADB, nicotinamide adenine dinucleotide binding; PBP2, periplasmic binding protein type 2.
b Note that these mutations represent only unique changes seen between SARC strain SULC and its parental strain SULA.
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uate the mutation rate and spectrum arising during the experi-
mental process. The mutation rates for SULB and SULC were
lower than the value of 2.8 � 10	7 reported previously for S.
solfataricus strain P2 (48). SULB had a mutation rate of 2.50 �
10	8 mutations per cell division, and SULC had a mutation rate of
7.49 � 10	8 mutations per cell division. In contrast, the number
of substitution mutations and insertions/deletions identified be-
tween the sequence of SULA (strain 98/2) and the sequence re-
ported under GenBank accession number CP001800.1, excluding
the 50-kb deletion (28), was 74. However, the mutation rate for
this comparison could not be determined in the absence of pas-
sage information for the genome reported under GenBank acces-
sion number CP001800.1. During the 85 cell divisions that took
place between the isolation of SULB and SULC, the mutation rate
increased 3-fold compared to the rate observed between SULA
and SULB. This suggested that there was greater selective pressure
accompanying the increase in thermoacidophily for SULC than
for SULB.

Despite the high number of insertion sequence (IS) elements in
the S. solfataricus genome (49), the frequency of transposition in
the SARC strains (calculated as the number of transpositions per
cell across all passages) was 8 � 10	9 transpositions per cell. This
was 4 to 5 orders of magnitude lower than the values of 10	4 to
10	5 transpositions per cell reported previously (50–52). Conse-
quently, this observation suggests that the endogenous IS ele-
ments are less active than previously observed, at least during the
imposition of acid selection. However, 30 transposase genes were
highly upregulated (�5-fold) in SARC strain SULC grown at pH
1.0 (see Table S1 in the supplemental material). The most upregu-
lated transposases were all members of the same gene families:
transposase ISC1217, transposase 1234/ST1916, and the IS1 trans-
posase (26). As it was reported previously that transposase activi-
ties in vitro are dependent on pH (53), the possibility that the
intracellular pH may have changed in the evolved cell lines was
tested, as the pH may have been an inhibitor of transposition.
Intracellular pH was measured by using a membrane-permeable
pH-dependent fluorescent dye (BCECF-AM) (41). However,
comparison of the ratios of fluorescence at 534 nm produced by
excitation at 490 nm and 440 nm for the SULA and SULC strains
did not show significant differences. This result indicated that at
least large changes in internal pH values were not evident in the
evolved strains and could not be used to explain the lack of trans-
position.

Transcriptomics. RNA-seq analysis with a read depth of 45
million to 75 million non-rRNA reads per transcriptome was con-
ducted to examine changes in gene expression that accompanied
the adaptive evolution process. The key pattern that emerged was
that growth under more acidic pH conditions precipitated an ox-
idative stress response. There were 235 ORFs that were up- or
downregulated 5-fold or more in SULC relative to the parental
strain SULA (see Table S1 in the supplemental material). Eighty-
four of these changes were in ORFs for hypothetical proteins and
proteins of unknown function, and another 31 were in ORFs an-
notated as transposases (see Table S1 in the supplemental mate-
rial). The remaining 117 affected ORFs that had annotated func-
tions were sorted into six major categories, signal transduction (13
ORFs), protein-modifying enzymes such as radical S-adenosyl
methionine (SAM) proteins (6 ORFs), transporters (16 ORFs),
oxidoreductases (17 ORFs), membrane biogenesis (4 ORFs), and
overall metabolism (61 ORFs), particularly those involved in gly-

colysis and the tricarboxylic acid (TCA) cycle (Fig. 4; see also Table
S1 in the supplemental material). The RNA-seq libraries of bio-
logical replicates all had Pearson correlation coefficients of �0.98,
indicating that the transcriptomic data were reproducible.

Many of the ORFs that had expression level changes of 5-fold
or greater in SULC were also altered in expression in the interme-
diate strain SULB (Fig. 4). This is consistent with the idea that
growth at lower pH imposes a common stress evident in the SULB
and SULC transcriptomes. In many cases, in SULB, the changes
were of a lesser magnitude. Sixty-nine of the 235 ORFs that had
differences in expression levels of 5-fold or greater in comparisons
of SULC and SULA also showed similar patterns between SULB
and its parent strain SULA. Sixty-five ORFs showed an interme-
diate effect, while four others showed an even greater fold change
than the change observed between SULC and SULA. The occur-
rence of the latter group of regulatory alterations may reflect a
transient need for higher expression levels subsequently satisfied
by events accompanying additional passage.

In the SULC transcriptome, the signal transduction genes in-
cluded SULA_2129 and SULA_2591. These are both SirA re-
sponse regulators, two-component response regulators that con-
trol secondary metabolism and have a signature CPxP motif that
might be important in mRNA binding (54). In addition, the MerI
protein, SULA_0494, which contains a CBS domain implicated in
ionic sensing (55) and energy status sensing (56), was also upregu-
lated in SULC along with the entire mercury resistance operon
(mer), which encodes MerH (mercury chaperone) and MerA
(mercuric reductase) (28, 29, 57). Induction of the mer operon
suggests that growth at lower pH is an oxidative stress, as recent
studies demonstrated that the MerR transcription factor also con-
trols the expression of MarR, an oxidative stress regulator (58).
Three AbrB family transcriptional regulators were also affected,

FIG 4 Relative transcriptomic profiles of evolved SARC cell lines. RNA-seq
analysis was conducted by using total RNA extracted from exponential-phase
cultures. Strains (cultivation pH) used were SULA (pH 3.0), SULB (pH 1.50),
and SULC (pH 1.00). Fold changes in abundances of all transcripts for SULB
and SULC were normalized to those of SULA. Classes of affected genes are
indicated. RNA-seq was conducted by using biological replicates for all RNA
samples. Pearson correlation coefficients were �0.98 for all transcriptomes.
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SULA_0734, SULA_1070, and SULA_1531. In bacterial firmic-
utes, AbrB regulates the transcription of genes expressed during
the transition state between vegetative growth and the onset of
stationary phase and sporulation (59, 60). While AbrB homologs
have been reported in Sulfolobus and its viruses (61, 62), their
functional roles are unclear.

The second indicator of oxidative stress consisted of genes cod-
ing for proteins within the membrane lipid biogenesis and degra-
dation cycle that were upregulated �5-fold (Fig. 5, green boxes,
and Table 3). These proteins may be upregulated to promote
membrane repair resulting from the increased exposure to hot
acid causing oxidative damage and accelerated membrane turn-
over. As the membrane lipid composition of acidophiles is known
to play a role in acid resistance, an attempt was made to compare
general patterns of lipid composition by using thin-layer chroma-
tography of total lipid extracts from SULA and SULC. The result-
ing major lipid classes separated by head group were characterized
by using lipid-specific dyes; however, no significant differences
were evident in comparisons of total lipids and glycolipids (see
Fig. S4 in the supplemental material).

A third indicator of oxidative stress consisted of genes coding
for the TCA cycle and glycolytic enzymes that were upregulated
2-fold or more. Their upregulation could be an indicator of in-
creased energy generation required to efflux excess protons from
the cytoplasm. This included genes for pyruvate ferredoxin/

flavodoxin oxidoreductase (SULA_2869, SULA_2870, and SULA_
2871), citrate synthase (SULA_0393), 2-oxoacid:ferredoxin oxi-
doreductase (SULA_0623 and SULA_0624), succinyl-CoA
synthase (SULA_0284 and SULA_0285), and malate dehydroge-
nase (SULA_0389). Of the glycolytic pathway, only gluconate dehy-
dratase (SULA_0968) and KDG (2-keto-3-deoxygluconate) aldolase
(SULA_0967) were upregulated �2-fold. An additional pattern
consistent with oxidative stress was that 8 of 17 oxidoreductase
genes with moderately induced expression (see below) were alco-
hol dehydrogenases. S. solfataricus harbors a large number of pri-
mary and secondary alcohol dehydrogenases whose phylogenetic
relationships have been examined (63). Increased levels of these
enzymes could promote the production of reduced pyridine nu-
cleotides as a response to increased oxidation.

Three radical SAM proteins were also upregulated (SULA_
0674, SULA_1500, and SULA_2656), as was the radical SAM en-
zyme PqqE (SULA_2655). Radical SAM proteins are responsible
for diverse reactions often involving posttranslational modifica-
tions such as methylation of RNA, small molecules, and proteins
(64, 65). Finally, the affected transporters included two amino
acid permeases (SULA_0962 and SULA_2170) and two sugar
ABC transporter permeases (SULA_0648 and SULA_0649).
Several other ABC transporters and MFS transporters were also
affected, including homologs of the EmrB/QacA subfamily of
drug resistance transporters (SULA_0517 and SULA_2161).
These are associated with proton-motive-force-driven antiport
(66). In other organisms, the efficiency of this family of trans-
porters has been shown to be affected by changes in external
pH, with transport improving as the pH is decreased (67). Al-
tered expression of these proteins may promote increased pro-
ton efflux by ion exchange.

In addition to the transcriptomic changes of 5-fold or
greater described above, there were 326 ORFs that showed
smaller yet significant changes in expression levels ranging
from 2- to 5-fold (see Table S1 in the supplemental material).
Seventeen of these changes were in ORFs involved in signal
transduction, 5 were in protein-modifying enzymes, 43 were in
transporters, 17 were in oxidoreductases, and 2 were in mem-
brane biogenesis proteins. The remaining changes involved
ORFs associated with overall cell metabolism and DNA bind-
ing as well as hypothetical proteins and transposases. Many of
these categories had duplicate ORFs and ORFs with similar
functions that showed similar expression patterns: multiple

FIG 5 Membrane lipid synthesis pathway in S. solfataricus. Boxes are labeled
with the enzyme ORF that they represent. Green boxes indicate genes that are
upregulated in SARC. DMAPP, dimethylallyl diphosphate; G1P, glycerol-1-
phosphate; DHAP, dihydroxyacetone phosphate. Gene names are indicated in
Table 3.

TABLE 3 Upregulated membrane synthesis genes in SULCa

ORF(s) Product

SULC_0669 Acetoacetyl-CoA transferase
SULC_1400 Mevalonate kinase
SULC_0773 and SULC_0196 Phosphomevalonate kinase
SULC_1080 Isopentyl-PP isomerase
SULC_1079 Geranylgeranyl diphosphate synthase
SULC_1675 Geranylgeranylglycerol-phosphate

geranylgeranyl transferase
SULC_0323, SULC_0670,

and SULC_2153
Acyl-CoA dehydrogenase

SULC_0427 Enoyl-CoA hydratase
SULC_0314 3-Hydroxyacyl-CoA dehydrogenase
a The full list of genes in the membrane synthesis pathway can be found in Table S2 in
the supplemental material. PP, pyrophosphate.
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copies of CopG transcriptional regulators were downregulated,
while multiple copies of TrmB family transcriptional regula-
tors were upregulated. Similar to the large RNA-seq changes,
multiple ORFs involved in protein methylation were upregu-
lated, in addition to ORFs involved in histone deacetylation.

Physiology of a merI mutant. The induction of the mer operon
genes suggested that growth at lower pH was an oxidative stress.
Therefore, the role of merI in the SARC phenotype was examined
further. Of the three classes of signaling genes altered in the SULC
transcriptome, including SirA, the CBS domain, and AbrB, only
the CBS domain encoded by merI occurred in a genome environ-
ment where genetic manipulation was unlikely to cause flanking
genetic disturbances arising from alterations of polycistrons and
divergent transcription units. Because the SARC strains were de-
rived from SULA, the wild-type strain of S. solfataricus, genetic
markers that are available could not be used to manipulate the
merI gene. Therefore, gene inactivation studies were conducted
with an otherwise wild-type derivative, PBL2025, that sup-
ported genetic analysis (28). A gene disruption mutant of merI,
PBL2036, was cultured in media with pH values ranging from
pH 3.0 to pH 1.3. Its growth was monitored under each pH
condition, and the resulting generation times were calculated
and compared to those for the growth of the wild type (SULA).
The merI mutant, however, showed no phenotypic difference
in acid resistance from SULA (see Fig. S5 in the supplemental
material).

DISCUSSION

The SARC phenotype of extreme thermoacidophily is unique
and not present in reported type strains belonging to the order
Sulfolobales. Because the natural habitats occupied by thermoaci-
dophilic archaea often exhibit greater extremes of acidity and tem-
perature, the capacity of the SARC lineages to achieve increased
thermoacidophily indicates that this trait was retained in a cryptic
state. During the adaptive process, the mutation rate increased in
concert with elevated acidity at rates normalized to cell division
that were consistent with those reported in previous studies. Sur-
prisingly, however, the mutation spectrum was distinct because of
the near absence of transposition. While no single mutation in
SULC appeared sufficient to explain the evolved phenotype, it is
possible that acting together, several or all of these mutations con-
ferred improved fitness at lower pH values. Reconstruction of
these mutations in a clean genetic background would be required
to test this idea. Repairing them in the original SARC background
cannot be done due to the incompatibility of these cell lines with
current genetic markers (28, 29, 34).

SARC strain SULC was observed to have a transposition
frequency several orders of magnitude lower than the reported
values for this microbial species (50–52), despite showing in-
creased expression levels of 30 transposases relative to the wild
type. This discrepancy between transposase expression and
transposition frequency could not be explained by a change in
the internal pH, and it is unclear why the rate of transposition
in this strain is decreased while many of its transposases show
increased expression. One possibility is that the majority of
transposition events are counterselected because they decrease
fitness at low pH.

Evaluation of the SARC transcriptome strongly suggests
that growth at low pH is accompanied by oxidative stress. This
finding is consistent with the natural habitat of these organisms

(1). Four major components of the SARC transcriptome sup-
port this conclusion: accelerated membrane biogenesis, mer
operon induction, increased expression of TCA cycle genes,
and increased expression of the alcohol dehydrogenase super-
family. Externally exposed features such as the membrane and
its integral proteins are most affected by acidity. Therefore,
membrane oxidation resulting from hot-acid damage is likely
to be a primary contributing factor for the phenotype of in-
creased acid resistance, and increased turnover of membrane
lipids represents a predicted response for evolved thermoaci-
dophily. For example, acid is known to degrade sugars via de-
hydration. The sugar head groups of SARC membrane lipids
are exposed to an environment that is 100-fold more acidic
than that of the parental type strain and might be degraded
accordingly. To accommodate such conditions, increased
membrane lipid cycling might be necessary. Increased turnover
and recycling of specific lipids as a response to oxidative stress
have been seen in other organisms (68). In the SARC cell lines,
induction of these genes is predicted to increase the rate of
membrane turnover as a way to replace lipids that have been
damaged by exposure to external acidity without altering the
overall structure of the membrane lipids. Accelerated lipid
turnover, however, was not accompanied by significant
changes in the major lipid classes in comparisons of total lipids,
phospholipids, and glycolipids.

The upregulation of the merHAI mercury resistance operon
was a second indicator of oxidative stress during growth at low
pH. This interpretation is consistent with data from a recent
report showing that the transcription factor MerR, which re-
sponds to the metal mercury, coregulates the expression of
MarR, a second transcription factor which controls the re-
sponse to oxidative stress (58). Because mercury titrates sulf-
hydryls, as do many oxidants, a coregulatory response should
enhance the response to oxidation (in this case increased acid)
and promote fitness.

Two additional transcriptomic patterns indicating that growth
at lower pH precipitated oxidative stress included enhanced ex-
pression of the alcohol dehydrogenase superfamily (63) and of key
genes in the TCA cycle. In other organisms, alcohol dehydroge-
nases are involved in responding to oxidative stress (69), to which
strong-acid conditions contribute. The large number of alcohol
dehydrogenase proteins that were upregulated in SULC could be a
response to the great oxidative stress to which the SARC cell lines
were exposed during cultivation at low pHs. Increased TCA cycle
activity would enhance energy production, providing larger
amounts of ATP to support proton extrusion from the cytoplasm
and thereby retain pH homeostasis.

In addition to those genes associated with oxidative stress, the
SARC transcriptome includes other genes with strongly altered
expression. It is therefore important to note that previous studies
have shown similar genome-wide changes in gene expression lev-
els (hundreds of ORFs differentially regulated) in several ther-
moacidophilic archaea (70–72), including S. solfataricus (73)
grown under heat shock conditions, and in multiple bacterial spe-
cies grown under acid stress conditions (74, 75).

Many mathematical models have described the effect of pH on
microbial growth (35–37). In this study, the cardinal pH model
(CPM) was used to predict growth-limiting conditions for ex-
treme acidophily by extrapolation from known data. The CPM
avoided overparameterization by not including nonbiological pa-
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rameters; assumed a constant temperature; and required opti-
mal-, minimum-, and maximum-pH growth conditions (35). The
CPM has been modified by other groups to achieve a high degree
of fit to experimental observations in studies involving growth
characteristics of microorganisms under various conditions (76,
77). Here, a high degree of fit could be shown between the CPM
and experimentally determined growth rates for the SARC cell
lines and approximate a limit for further evolutionary adaptation
in the absence of induced mutagenesis. Transcriptomic analysis
implicated complex changes in expression involving environmen-
tal sensing, transporters, and membrane turnover as being inte-
gral to the strong-acid-resistant traits of these cell lines. In light of
these findings, the additional use of adaptive laboratory evolution
in archaea could provide a useful approach to investigate mecha-
nisms associated with life under extreme conditions.
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